“运动方程”是描述结构中力与位移(包括速度和加速度)关系的数学表达式。其建立方法主要有5种,包括牛顿第二定律、D'Alembert原理、虚位移原理、Hamilton原理和Lagrange方程。
不明显使用惯性力和弹性力,而分别用对动能和位能的变分代替。因而对这两项来讲,仅涉及处理纯的标量,即能量。而在虚位移中,尽管虚功本身是标量,但用来计算虚功的力和虚位移则都是矢量。
“运动方程”是描述结构中力与位移(包括速度和加速度)关系的数学表达式。其建立方法主要有5种,包括牛顿第二定律、D'Alembert原理、虚位移原理、Hamilton原理和Lagrange方程。
不明显使用惯性力和弹性力,而分别用对动能和位能的变分代替。因而对这两项来讲,仅涉及处理纯的标量,即能量。而在虚位移中,尽管虚功本身是标量,但用来计算虚功的力和虚位移则都是矢量。