公元263年,中国数学家刘徽用“割圆术”计算圆周率,他先从圆内接正六边形,逐次分割一直算到圆内接正192边形。他说“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”,包含了求极限的思想。刘徽给出π等于3、141024的圆周率近似值,刘徽在得圆周率等于3、14之后,将这个数值和晋武库中汉王莽时代制造的铜制体积度量衡标准嘉量斛的直径和容积检验,发现3、14这个数值还是偏小。于是继续割圆到1536边形,求出3072边形的面积,得到令自己满意的圆周率 。
公元480年左右
公元263年,中国数学家刘徽用“割圆术”计算圆周率,他先从圆内接正六边形,逐次分割一直算到圆内接正192边形。他说“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”,包含了求极限的思想。刘徽给出π等于3、141024的圆周率近似值,刘徽在得圆周率等于3、14之后,将这个数值和晋武库中汉王莽时代制造的铜制体积度量衡标准嘉量斛的直径和容积检验,发现3、14这个数值还是偏小。于是继续割圆到1536边形,求出3072边形的面积,得到令自己满意的圆周率 。
公元480年左右