数列极限存在的条件是对任意给定的ε>0,有一正整数N,当m,n>N时,有|xn-xm|<ε成立。数列的极限问题是我们学习的一个比较重要的部分,同时,极限的理论也是高等数学的基础之一。数列极限的问题作为微积分的基础概念,其建立与产生对微积分的理论有着重要的意义。
在有了极限的定义之后,为了判断具体某一数列或函数是否有极限,人们必须不断地对极限存在的充分条件和必要条件进行探讨。在经过了许多数学家的不断努力之后,终于由法国数学家柯西(Cauchy)获得了完善的结果。
数列极限存在的条件是对任意给定的ε>0,有一正整数N,当m,n>N时,有|xn-xm|<ε成立。数列的极限问题是我们学习的一个比较重要的部分,同时,极限的理论也是高等数学的基础之一。数列极限的问题作为微积分的基础概念,其建立与产生对微积分的理论有着重要的意义。
在有了极限的定义之后,为了判断具体某一数列或函数是否有极限,人们必须不断地对极限存在的充分条件和必要条件进行探讨。在经过了许多数学家的不断努力之后,终于由法国数学家柯西(Cauchy)获得了完善的结果。